Rapid Production of Human Brain and Muscle Cells

Adult Stem Cells

Wellcome Trust Sanger Institute scientists and their collaborators at the University of Cambridge have created a new technique that simplifies the production of human brain and muscle cells allowing millions of functional cells to be generated in just a few days. The results published in Stem Cell Reports open the door to producing a diversity of new cell types that could not be made before.

Human pluripotent stem cells offer the ability to create any tissue, including those which are typically hard to access, such as brain cells.

In a human, it takes nine to twelve months for a single brain cell to develop fully. To create human brain cells, including grey matter (neurons) and white matter (oligodendrocytes) from an induced pluripotent stem cell, it can take between three and twenty weeks using current methods. However, these methods are complex and time-consuming, often producing a mixed population of cells.

The new platform technology, OPTi-OX, optimises the way of switching on genes in human stem cells. Scientists applied OPTi-OX to the production of millions of nearly identical cells in a matter of days. In addition to the neurons, oligodendrocytes, and muscle cells the scientists created in the study, OPTi-OX holds the possibility of generating any cell type at unprecedented purities, in this short timeframe.

To produce the neurons, oligodendrocytes, and muscle cells, scientists altered the DNA in the stem cells. By switching on carefully selected genes, the team “reprogrammed” the stem cells and created a large and nearly pure population of identical cells. The ability to produce as many cells as desired combined with the speed of the development gives an advantage over other methods. The new method opens the door to drug discovery, and potentially therapeutic applications in which large amounts of cells are needed.

An author of the study, Dr Ludovic Vallier from the Wellcome Trust Sanger Institute said: “What is really exciting is we only needed to change a few ingredients — transcription factors — to produce the exact cells we wanted in less than a week. We over-expressed factors that make stem cells directly convert into the desired cells, thereby bypassing development and shortening the process to just a few days.”

OPTi-OX has applications in various projects, including the possibility to generate new cell types which may be uncovered by the Human Cell Atlas. The ability to produce human cells so quickly means the new method will facilitate more research.

Joint first author, Daniel Ortmann from the University of Cambridge, said: “When we receive a wealth of new information on the discovery of new cells from large scale projects, like the Human Cell Atlas, it means we’ll be able to apply this method to produce any cell type in the body, but in a dish.”

Mark Kotter, lead author and Clinician from the University of Cambridge, said: “Neurons produced in this study are already being used to understand brain development and function. This method opens the doors to producing all sorts of hard-to-access cells and tissues so we can better our understanding of diseases and the response of these tissues to newly developed therapeutics.”

Reference: Matthias Pawlowski, Daniel Ortmann, Alessandro Bertero, Joana M. Tavares, Roger A. Pedersen, Ludovic Vallier, Mark R.N. Kotter. Inducible and Deterministic Forward Programming of Human Pluripotent Stem Cells into Neurons, Skeletal Myocytes, and Oligodendrocytes. Stem Cell Reports, 2017; DOI: 10.1016/j.stemcr.2017.02.016

Which Produce Has the Most and Least Pesticide Contamination

fruit and vegetables

More and more Americans are demanding food free of synthetic chemicals. But tests by the U.S. Department of Agriculture found that nearly 70 percent of samples of 48 types of conventionally grown produce were contaminated with pesticide residues.

The USDA found a total of 178 different pesticides and pesticide breakdown products on the thousands of produce samples it analyzed. The pesticides persisted on fruits and vegetables even when they were washed and, in some cases, peeled.

But there are stark differences in the number and amount of pesticides on various types of produce. The Environmental Working Group’s annual Shopper’s Guide to Pesticides in Produce lists the 12 fruits and vegetables with the most pesticide residues, and the 15, for which few, if any, residues were detected.

When buying organic produce is not an option, use the Shopper’s Guide to choose foods lower in pesticide residues. With the Shopper’s Guide, you can have the health benefits of a diet rich in fruits and vegetables while limiting your exposure to pesticides.

This year the list of produce with the highest loads of pesticide residues includes, in order starting with the highest contamination:

1. Strawberries
2. Spinach
3. Nectarines
4. Apples
5. Peaches
6. Celery
7. Grapes
8. Pears
9. Cherries
10. Tomatoes
11. Sweet bell peppers
12. Potatoes

Each of these foods tested positive for a number of different pesticide residues and contained higher concentrations of pesticides than other produce. More than 98 percent of samples of strawberries, spinach, peaches, nectarines, cherries and apples tested positive for residue of at least one pesticide. A single sample of strawberries showed 20 different pesticides. Spinach samples had, on average, twice as much pesticide residue by weight than any other crop.

The Environmental Working Group’s list of produce least likely to contain pesticide residues included:

1. Sweet Corn
2. Avocados
3. Pineapples
4. Cabbage
5. Onions
6. Frozen sweet peas
7. Papayas
8. Asparagus
9. Mangoes
10. Eggplant
11. Honeydew melon
12. Kiwis
13. Cantaloupe
14. Cauliflower
15. Grapefruit

Relatively few pesticides were detected on these foods, and tests found low total concentrations of pesticide residues on them. Avocados and sweet corn were the cleanest with only 1 percent of the samples showing any detectable pesticides. More than 80 percent of pineapples, papayas, asparagus, onions and cabbage had no pesticide residues. No single fruit sample from the cleanest list tested positive for more than four types of pesticides. Multiple pesticide residues are extremely rare on these vegetables. Only 5 percent of had two or more pesticides.

Most processed foods typically contain one or more ingredient derived from genetically engineered crops, such as corn syrup and corn oil made from predominantly GMO starchy field corn. Yet GMO food is not often found in the produce section of American supermarkets. A small percentage of zucchini, yellow squash and sweet corn is genetically modified. Most Hawaiian papaya is GMO. Other varieties of GMO foods are currently being tested. The USDA may approve them in the future.

Because federal law does not require labeling of genetically engineered produce, people who want to avoid GMO crops can purchase organically grown sweet corn, papaya, zucchini and yellow squash. For processed foods, look for items that are certified organic.

People who eat organic produce eat fewer pesticides. A 2015 study by Cynthia Curl of the University of Washington found that people who report they “often or always” buy organic produce had significantly less organophosphate insecticides in their urine samples. This was true even though they reported eating 70 percent more servings of fruits and vegetables per day than adults reporting they “rarely or never” purchase organic produce. Several long-term observational studies have indicated that organophosphate insecticides may impair children’s brain development.

In 2012, the American Academy of Pediatrics issued an important report that said children have “unique susceptibilities to [pesticide residues’] potential toxicity.” The pediatricians’ organization cited research that linked pesticide exposures in early life to “pediatric cancers, decreased cognitive function, and behavioral problems.” It advised its members to urge parents to consult “reliable resources that provide information on the relative pesticide content of various fruits and vegetables.”

The Biological Aging Clock and How to Slow It Down

Clock

Aging in humans (and animals) can be seen as either an inevitable process of wear and tear or as an inherent biological program by which the lifespan of each species is more or less predetermined. Recent research has shown that DNA methylation, an epigenetic modification which alters how DNA is read and expressed without altering the underlying sequence, can show age related changes. A sub-set of these modifications are so accurate that chronological age in humans can be predicted +/- 3.6 years from any tissue or fluid in the body (Horvath S. 2013). This is by far the best biomarker of age available and is referred to as the epigenetic clock. Interestingly, analysis of DNA methylation can also provide information on biological age, which is a measure of how well your body functions compared to your chronological age. For instance, people who are centenarians have a slower clock.

But, how does this epigenetic clock work? And is it possible to change the ticking rate? Researchers at the Babraham Institute and the European Bioinformatics Institute have now identified a mouse epigenetic aging clock. This work, published today in Genome Biology, shows that changes in DNA methylation at 329 sites in the genome are predictive of age in the mouse with an accuracy of +/- 3.3 weeks. Considering that humans live to approximately 85 years and mice to 3 years, the accuracy of the mouse and human clocks (better than 5%) are surprisingly similar.

Using the mouse model, researchers also showed that lifestyle interventions known to shorten lifespan sped up the clock. For example, removing the ovaries in female mice accelerates the clock, something that is also observed in early menopause in women. And interestingly a high fat diet which we know is detrimental to human health also accelerates the ageing clock. Remarkably, researchers were able to detect changes to the epigenetic clock as early as 9 weeks of age, bearing in mind that the lifespan of a mouse can easily be more than 3 years, this represents a massive reduction in both time and cost which the researchers believe will accelerate future ageing discoveries.

Tom Stubbs, PhD Student in the Reik group at the Babraham Institute and lead author of the paper, said: “The identification of a human epigenetic ageing clock has been a major breakthrough in the ageing field. However, with this finding came a number of questions about its conservation, its mechanism and its function. Our discovery of a mouse epigenetic ageing clock is exciting because it suggests that this epigenetic clock may be a fundamental and conserved feature of mammalian ageing. Importantly, we have shown that we can detect changes to the ticking rate in response to changes, such as diet, therefore in the future we will be able to determine the mechanism and function of this epigenetic clock and use it to improve human health.”

Dr. Marc Jan Bonder, postdoctoral researcher at the European Bioinformatics Institute, adds: “Dissecting the mechanism of this mouse epigenetic ageing clock will yield valuable insights into the aging process and how it can be manipulated in a human setting to improve health span.”

With further study, scientists will be able to understand the inner mechanistic workings of such a clock (for example using knowledge about enzymes that regulate DNA methylation in the genome) and change its ticking rate in the mouse model. This will reveal whether the clock is causally involved in aging, or whether it is a read-out of other underlying physiological processes. These studies will also suggest approaches to wind the aging clock back in order to rejuvenate tissues or even a whole organism.

Professor Wolf Reik, Head of the Epigenetics Programme at the Babraham Institute, said: “It is fascinating to imagine how such a clock could be built from molecular components we know a lot about (the DNA methylation machinery). We can then make subtle changes in these components and see if our mice live shorter, or more interestingly, longer.” Such studies may provide deeper mechanistic insights into the ageing process and whether lifespan in a species is in some way programmed.”

Reference: Thomas M. Stubbs, Marc Jan Bonder, Anne-Katrien Stark, Felix Krueger, Ferdinand von Meyenn, Oliver Stegle, Wolf Reik. Multi-tissue DNA methylation age predictor in mouse. Genome Biology, 2017; 18 (1) DOI: 10.1186/s13059-017-1203-5

Spray on Skin Regenerates Burns Within Days

Skin Stem Cells

When a person is severely burned it is a serious skin injury. Typically the treatment involves grafting a layer of skin from a healthy part of the body to the injured area. Once the grafted skin heals which can take some time there is usually very unsightly scarring which the person has to live with the rest of their life. If the scarring is on the face the disfigurement can cause major emotional problems. Also grafted skin often lacks flexibility which leads to pain, stiffness and other problems.

What if there was a way to isolate stem cells from healthy skin, process them and spray them on the burned or injured area. The stem cells would generate fresh new skin within days and without scarring or other problems associated with grafting. This might seem like one of those articles about a stem cell technology that is in the research and development stage with the prospect that it will be available for actual human treatment in 10 or 15 years, however it has already been successfully used to treat human burn patients in Europe. An actual example is shown in the before and after image. This treatment can also be used for cosmetic purposes such as replacing scar tissue with healthy new skin.

The CellMist? Solution is a new invention that involves a liquid suspension containing a patient?s own regenerative skin stem cells. A small sample (as little as a square inch) of the patient?s skin is quickly processed to liberate the stem cells from surrounding tissue. The resulting product is referred to as the ?CellMist? Solution? containing the patient?s stem cells. The CellMist? Solution is placed in a device called the SkinGun? for spray application onto the patient?s wound.

The SkinGun? sprays the cells onto wound sites to begin healing. Unlike conventional aerosol and pump systems, this next-generation fluid sprayer does not expose fragile cells to strong forces that can tear them apart. Instead the SkinGun? gently delivers the CellMist? Solution directly to the wound site using a positive-pressure air stream.

RenovaCare, a developer of novel medical grade liquid spray devices and patented CellMist? and SkinGun? technologies*, announced favorable outcomes from laboratory studies conducted by Berlin-Brandenburg Center for Regenerative Therapies (BCRT), a translational research center at Charit? Universit?tsmedizin Berlin, one of the world?s largest university hospitals.

The goal was to work towards the use of CellMist? and SkinGun? technologies to quickly isolate a patient?s own stem cells and gently spray them onto burns and wounds for rapid self-healing. The results of a new study provide pre-clinical support for first isolating keratinocytes from skin samples, and subsequently achieving even and gentle spray application without harming these powerful yet delicate cells.

Charit? scientists presented their findings from in vitro studies at the EPUAP Focus Meeting 2016 in Berlin, Germany. Data demonstrated that human skin stem cells sprayed with the company?s patented SkinGun? device maintained 97.3% viability. Cell viability is essential to regenerating skin for burns, wounds, and cosmetic applications. Cell growth was comparable to pipetting, the industry?s widely accepted ?gold-standard? for the deposition of cells.

The results show that the described method consistently allows isolating keratinocytes with characteristics suitable for therapeutic applications. This indicates that use of the SkinGun? for spray application of keratinocytes may allow for even distribution of cells with no impairment of cell viability or cell growth when evaluated in vitro, in contrast to those evaluations with conventionally seeded cells, according to study authors, Dr. Christa Johnen, Nadja Strahl, and Dr. Katrin Zeilinger.

Among specific aims of the study, was evaluation of several factors important to the regeneration of human skin, including cell yield, viability, metabolic activity, and cell growth. Positive results were reported from experiments related to each of these investigations. After spraying skin stem cells using the RenovaCare SkinGun?, investigators recorded favorable metabolic activity from measurements of glucose consumption and lactate release. Cell morphology was evaluated by microscopic observation, and cell integrity was determined by LDH release.

The study was funded by RenovaCare, Inc. Tissue samples for skin cell isolation were obtained from surgical treatments with approval of the Charit? ethical committee.

*RenovaCare products are currently in development. They are not available for sale in the United States. There is no assurance that the company?s planned or filed submissions to the U.S. Food and Drug Administration, if any, will be accepted or cleared by the FDA.

RenovaCare, Inc. is developing first-of-their-kind autologous (self-donated) stem cell therapies for the regeneration of human organs, and novel medical grade liquid sprayer devices.

In addition to its liquid spray devices for wound irrigation, the company?s pipeline products under development target the body?s largest organ, the skin. The RenovaCare CellMist? System will use the patented SkinGun? to spray a liquid suspension of a patient?s stem cells ? the CellMist? Solution ? onto wounds. RenovaCare is developing its CellMist? System as a promising new alternative for patients suffering from burns, chronic and acute wounds, and scars. In the U.S. alone, this $45 billion market is greater than the spending on high-blood pressure management, cholesterol treatments, and back pain therapeutics.

A video of a patient who was treated for severe burns can be viewed at https://renovacareinc.com/2016/07/burn-recovery-video-state-trooper/

Astaxanthin Upregulates the FOX03 Longevity Gene

Astaxanthin

Life Code supplements are formulated to improve the quality of life and increase lifespan. An important study has just been released showing that one of the many ingredients (Astaxathin) in our nutraceutical supplement EpiMax upregulates the FOX03 longevity gene. We use a natural Astaxathin derived from algae which includes other lipid soluble anti-oxidants and synergistic co-factors.

The University of Hawaii John A. Burns School of Medicine (“JABSOM”) and Cardax, Inc., a Honolulu based life sciences company, jointly announced the results of the animal study evaluating the effectiveness of Astaxathin and demonstrating that it holds promise in anti-aging therapy.

“All of us have the FOXO3 gene, which protects against aging in humans,” said Dr. Bradley Willcox, MD, Professor and Director of Research at the Department of Geriatric Medicine, JABSOM, and Principal Investigator of the National Institutes of Health-funded Kuakini Hawaii Lifespan and Healthspan Studies. “But about one in three persons carry a version of the FOXO3 gene that is associated with longevity. By activating the FOXO3 gene common in all humans, we can make it act like the “longevity” version. Through this research, we have shown that Astaxanthin “activates” the FOXO3 gene,” said Willcox.

“This preliminary study was the first of its kind to test the potential of Astaxanthin to activate the FOXO3 gene in mammals,” said Dr. Richard Allsopp, PhD, Associate Professor, and researcher with the JABSOM Institute of Biogenesis Research.

In the study, mice were fed either normal food or food containing a low or high dose of the Astaxanthin compound CDX-085 which is a synthetically manufactured Astaxanthin. The animals that were fed the higher amount of the Astaxanthin compound experienced a significant increase in the activation of the FOXO3 gene in their heart tissue. Because only a limited amount of naturally produced Astaxathin is available a synthetic version has the advantage that unlimited quantities can be manufactured.

“We found a nearly 90% increase in the activation of the FOXO3 “Longevity Gene” in the mice fed the higher dose of the Astaxanthin compound CDX-085,” said Dr. Allsopp.

Astaxanthin is a naturally occurring compound found in seafood such as shrimp, lobster, and salmon, and is typically sourced from algae, krill, or synthesis. Multiple animal studies have demonstrated that Astaxanthin provides heart, liver, blood and other benefits.

Astaxanthin is the active ingredient in CDX-085, Cardax’s patented second generation compound. “This proprietary compound, like our first generation product ZanthoSyn, delivers Astaxanthin to the blood stream with superior absorption and purity, but in a more concentrated form, allowing higher doses per capsule and improved dosing convenience,” said Watumull. In animal study results published in peer-reviewed papers, CDX-085 statistically significantly lowered triglycerides by 72% as well as atherosclerosis and blood clots.

Researchers with the Kuakini Hawaii Lifespan Study, sponsored by the National Institutes of Health and Kuakini Medical Center, discovered that for those who have a certain gene (the FOXO3 “G” genotype) there is “extra protection” against the risk of death as you get older, compared to average persons. Using data from the Kuakini Hawaii Lifespan Study, a substudy of the 50-year Kuakini Honolulu Heart Program (Kuakini HHP), and the National Institute on Aging’s Health, Aging and Body Composition (Health ABC) study as a replication cohort, researchers found that people with this FOXO3 gene have an impressive 10% reduced risk of dying overall over a 17 year period. Data are based on a 17-year prospective cohort study of 3,584 older American men of Japanese ancestry from the Kuakini HHP cohort study and a 17-year prospective replication study of 1,595 white and 1,056 African-American elderly individuals from the Health ABC cohort.