People Generate Their Own Oxidation Field Changing Air Chemistry

The indoor environment is usually more dangerous than the outdoors, with 90% of people’s time spent indoors. Chemicals from a variety of sources such as outdoor pollutants can seep into your home and cause problems for you there too! When it comes to health risks our bodies are constantly being bombarded by new chemicals – some good (like oxygen), others bad such as viruses or bacteria which want nothing better then an opportunity to live off of us. You might be surprised to learn that we are extremely harmful traveling emission sources of chemicals, including those found in our skin and breath.

The answer to why our atmosphere bothers cleaning up after us is that it’s a living thing. Atmospheric chemicals react with each other and rain to disappear. The sun UV light and water vapor in the air react with each other, forming molecules which then attach themselves (and any dirt) onto these reactive ingredients as “detergents.” These detergent-like components are mostly made when solar radiation strikes oxygen or hydrogen gas present amongst other things found on earth.

Indoor air is affected by rain and direct sunlight. UV rays are mainly filtered out through glass windows, so it’s been assumed that concentration of OH radicals in indoor environments isn’t as high compared to outdoor ones. This may be due mostly because there are no strong sources like solar radiation or wild fires burning nearby which can produce abundant quantities of ultra-violet light (which we know cause damage). It also seems likely than any ozone leaking into a building from outdoors will combine with other chemicals found inside a building.

OH radicals are a byproduct of skin oils and the ozone, which can be created indoors just due to people. It has now been discovered that humans are able to transform these reactive chemicals themselves- meaning we have even more control than previously thought over how much damage will be done or protective measures taken against it! The shape and strength of its oxidation field can be determined by things like ventilation patterns or space configuration. The research team found that even outside daytime concentrations of OHs were comparable.

The reaction of unsaturated fats and oil with ozone can be quite harmful to your skin, releasing a host of squalene degradation products. One type in particular is double-bonded gas phase chemicals that react further when exposed to the airfield generating OH radicals which have been shown as an important factor for aging signs such as wrinkles or age spots due their ability to damage DNA molecules by breaking apart hydrogen bonds between bases pairs. This study measured each individual level while also determining how much total reactivity there was so we could quantify what impact this has overall over time.

When scientists tested four different people to see how well they responded in an environment with higher indoor levels of ozone, they found that not only did all participants experience adverse effects such as headaches and difficulty breathing but even those who arrived without any pre-existing medical conditions experienced these same symptoms. The team monitored each individual’s OH value before their stay began along side assessments made at regular intervals during it.

To understand how the human activated OH field compared under a variety of conditions, results from an elaborate multiphase chemical kinetic model were connected with computational fluid dynamics models. The modeling team found that the human generated field varied under a variety of conditions, beyond those tested in lab. From their results it is clear OH radicals are abundant and present forming durable spatial gradients.

The model developed by this team has been the first of its kind that can accurately predict chemical processes happening at both molecular scales (in terms of individual molecules) as well room-sized regions. It does make sense why OH would be generated from your skin reaction when reacting with air particles; they’re essentially just small versions of you!

The team’s work has found that OH can oxidize many more spaces than ozone, which creates a myriad of products right in our immediate surroundings. These impacts on health are unknown as they have not yet been studied experimentally or clinically but could be serious due to how much time we spend near chemical signals like those present from plastics and other chemicals.

The research published today has implications for our health. Chemical emissions from a variety of furniture and materials are being tested before they can be approved to sell. It would also be wise to conduct tests in the presence of ozone because oxidation processes may generate respiratory irritants such as 4-oxopentanal or other OH radical generated oxygenated species that could have negative effects, especially on children.

To view the original scientific study click below:
The human oxidation field