EpiMax

New Discovery May Extend Healthy Lifespan by 50%

Scientists have identified pathways that could enable humans to live for well over 100 healthy years according to one of the scientists who participated in the research. The synergistic cellular pathways for longevity that increase the lifespan five fold were discovered in C. elegans which are a nematode worm used as models in aging research. This translates to extending human lifespan by about 50%.

C. elegans are popular models for aging research because they share many of its genes with humans and due to its short lifespan of three to four weeks, scientists can quickly assess the effects of genetic and environmental interventions for extending healthy lifespan.

The discovery of two major pathways governing aging in C. elegans has created intensive research. These pathways are conserved which means they have been passed down to humans through the evolutionary process. A variety of drugs that can extend healthy lifespan through altering these pathways are currently under development. The discovery of the synergistic effect has opened the door to more effective therapies aimed at anti aging.

The recent research used a double mutant in which the insulin signaling IIS and TOR pathways were genetically altered. Because an alteration of the IIS pathways will yield a 100% increase in lifespan and an alteration of the TOR pathway yields a 30% increase, the double mutant would be expected to live 130% longer. However, its lifespan was amplified by 500%.

Despite this discovery in C. elegans of cellular pathways that govern aging, it wasn’t clear how these pathways interact with each other. Through helping to characterize these interactions, the research team is paving the way for needed therapies to increase healthy lifespan for the rapidly aging population.

The synergistic extension is something the team calls “wild”. The effect wasn’t one plus one equals two. It was one plus one equals five. The findings demonstrate that nothing throughout nature exists in a vacuum. To develop the most effective treatments for anti aging, longevity networks rather than individual pathways needs to be looked at.

This discovery of the synergistic interaction might lead to the use of combination therapies with each affecting a different pathway to extending human healthy lifespan. The synergistic interaction might also explain why researchers have not be able to identify a single gene that is responsible for the ability of some humans to live to very old ages free of major diseases.

To view the original scientific study click below

Translational Regulation of Non-autonomous Mitochondrial Stress Response Promotes Longevity.