Road Traffic Noise May Cause Significant Weight Gain

noise pollution

Results from a study conducted by the Barcelona Institute for Global Health have shown that people who are exposed to the highest levels of traffic noise are at an increased risk of becoming obese. Even just a 10 dB increase in mean noise levels was shown to be associated with a 17% increase in developing obesity.

The study began when the researchers wanted to confirm whether results from earlier studies demonstrated a correlation between several markers for obesity and traffic noise. The study involved 3796 adult participants in the population based Swiss SAPADIA cohort study and had also attended a minimum of two follow-up visits between years 2001 and 2011.

The study was based on objective measures including participants height, weight, waist circumference, body mass index and abdominal fat. The data was then analyzed along with estimates of exposure to traffic noise which was developed in the context of the Swiss SiRENE project.

The researchers also analyzed exposure to noise generated from railway traffic and aircraft. They did not find any significant correlation except in long term exposure to the railway noise which was not associated with obesity but was associated with an increased risk of overweight.

The design and methodology of the study were selected to allow the team to review all data from two different perspectives. Cross sectional analysis was used to examine more objective measures and to study the participant population at a specific time.

The other study, a longitudinal design, allowed the team to evaluate how the increased risk of obesity evolved over the time frame of the study. The correlations with traffic noise pollution were consistent in both studies. Overweight only correlated with exposure to noise from traffic in the cross section study. The team did not find any correlation between body mass index and noise exposure which was measured continuously throughout the longitudinal study.

This study adds additional evidence to further support the hypothesis that obesity is affected by traffic related noise. The results of this study which were obtained in a different population from earlier studies were similar. However, the team indicates that additional longitudinal studies are needed to further confirm correlation and to examine some inconsistencies with the data which prevented the team from formulating an explanation that would be accepted by the scientific community.

Repeated exposure to noise pollution is a widespread public health problem. Noise is a stress factor that contributes to communication, rest and sleep. A variety of studies have shown that noise contributes to a risk of a variety of diseases and it alters our sleep and generates stress. Hormone levels can be altered and sleep disturbances deregulate glucose metabolism and will also alter appetite. When sleep patterns are disturbed, the immune system functions can be affected along with control of appetite and expenditure of energy.

Several epidemiological and experimental studies have shown a correlation between sleep deprivation and increased risk of obesity and overweight. A potential link between long term exposure to noise and the increased risk of obesity may contribute to stress and sleep quality.

The research has shown some indication that reducing traffic related exposure to noise may be a way to combat obesity. For instance noise reducing foam can be installed in corners of rooms to absorb and decrease sound levels.

To view the original scientific study click here: Long-term exposure to road traffic noise may increase the risk of obesity.

Which is Better for Bone Health…Nutrition or Exercise?


One huge question that fitness experts and scientists are curious about is whether nutrition or exercise has the most positive impact on bone strength. Researchers at the University of Michigan set out to answer that question by looking at mineral supplementation and exercise in mice.

The research team discovered surprising results. They found that nutrition had a greater impact on strength and bone mass over exercise. Even when the exercise training was discontinued, the mice retained gains in bone strength as long as they remained on a mineral supplemented diet.

The long term mineral supplementation diet not only led to increased strength and bone mass, but the ability to maintain the increase even after training was discontinued. Although the test was conducted on mice, in regards to the progression to humans diet is much easier for people to carry on as they age and are not able to do as much exercise or any at all.

Another important finding was that diet alone has benefits on bone even without the exercise. This is another surprise as the team expected that exercise with a normal diet would result in greater gains in bone strength but that wasn’t the case. However, combining the two amplifies the gains.

The team looked at increased calcium and phosphorus and found benefits to increasing both of their supplements. This doesn’t mean that people should start buying and consuming these two supplements. The findings don’t translate directly from the mice to humans. However, it does give the researchers a conceptual place to begin.

Humans achieve peak bone mass in their early twenties with declines after that. The question now is how to maximize the amount of bone mass while young so that when the declines do begin, people are at a better place.

The team also preformed a battery of mechanical assessments on bone. Bone doesn’t always predict or scale with the mechanical quality of the bone tissue. The mice were tested after eight weeks of training plus a supplemented diet or a normal diet and then after eight weeks of no training.

Calcium is one of the major building blocks of our bone tissue, however there are many other minerals and nutrients also needed including magnesium, silicon, manganese, boron, vitamin K2, vitamin D3 and vitamin C. Some of the best bone building foods are green leafy vegetables such as kale, swiss chard, and collard greens which contain many of these nutrients.

To view the original scientific study click here: Combined mineral-supplemented diet and exercise increases bone mass and strength after eight weeks and maintains increases after eight weeks detraining in adult mice

Meditation Linked to Better Feedback

girl meditating

Researchers have discovered a distinct link between meditation and how people who practice it respond to feedback. The University of Surrey conducted a study that has shown that meditation adapts the brain to respond better to feedback.

The study included experienced, novice and non-meditators. All were trained to choose images associated with rewards with each pair of images containing varying probabilities of rewards. Some images resulted in a reward 80% of the time while others resulted in a reward just 20% of the time. Study participants eventually learned to choose the pairing that had the higher outcome.

The participants who meditated were much more successful in choosing the high probability pairings which indicated a tendency to learn from positive outcomes. The non-meditators who learned the pattern via low probability pairings suggested a tendency to learn from negative outcomes.

The study participants were connected to an EEG during the study. Results from the EEG showed that all three groups responded similarly to positive feedback. However, the neurological response to negative feedback was the highest in the non-meditation group which was followed by the novice group and lastly by the mediation group. The results indicate that the brains of meditators are less affected by negative feedback which may be attributed to the altered levels of dopamine resulting from meditation.

Dopamine is integral to how we learn and process information. The current study indicates that meditation may be a way to affect the levels of dopamine in the brain and how humans deal with negative and positive feedback.

Humans have been meditating for over 2000 years, however the neural mechanisms of meditation are still relatively unknown. The findings from the current study demonstrate that on a deep level people who meditate respond to feedback in a more even handed way that those who do not meditate.

Meditation can improve immune function and reduce stress. With the current study, the researchers have found that it can also impact how we receive feedback…that is if we quickly learn from mistakes or if we need to keep making them before finding the right answer. This can impact how people perform in the classroom and workplace.

To view the original scientific study click here: Meditation experience predicts negative reinforcement learning and is associated with attenuated FRN amplitude.

Maximizing Lutein from Spinach


Lutein is a potent antioxidant that offers a wide range of health benefits. It is best known for protecting the eyes and spinach along with other dark leafy vegetables contain the highest levels. Interestingly, a new study from Linkoping University, Sweden, has found that how you prepare fresh spinach and other dark green leafy vegetables can maximize lutein. Of course there are many other nutrients in natural foods that are also better preserved and absorbed using the same approach.

This study allowed the team to see what influence the level of lutein in the blood would have by increasing dietary intake of this antioxidant. The research group studied which method of spinach preparation allowed the greatest benefit of lutein maximization. Spinach was chosen as the vegetable of choice for the study because it contains comparatively high levels of lutein and is also consumed by many people.

Preparation methods that are typically used at home were used in the study. The researchers compared several temperatures and heating times along with cold preparations such as spinach in salads and in smoothies.

The research team used baby spinach from a supermarket in their study. The spinach samples which were prepared in cooked fashion were fried, steamed, and boiled for up to 90 minutes and the lutein content was measured at different times. The team also compared different heating times. Lutein like other nutrients degrades with heat.

The results shows that heating time was important when spinach is boiled. The longer the spinach is boiled the less lutein is retained. When spinach is fried at a high temperature, a large amount of lutein was degraded after just two minutes. And more lutein was lost when spinach was baked in the oven at a higher temperature than when it is cooked in a soup or stew.

The study did show that reheating spinach in the microwave actually compensated for some loss of lutein. More lutein was released from the spinach as the plant structure was further broken down by microwaving.

The best way to maximize lutein from spinach is to not heat it at all. Eating it raw in a salad or adding it to a smoothie gains the most benefits. And when spinach is chopped into small pieces and then a fat added such as a dairy product in a smoothie, more lutein is released and the fat actually increases the solubility of the lutein in the fluid.

Spinach is just one of the great sources of lutein. Other sources include kale, brussel sprouts, parsley, broccoli and peas along with orange juice, kiwi, red peppers, squash and grapes. As concluded in the above study, consuming any of the sources in their raw form gains the most benefits from lutein.

To view the original scientific study click here: Liberation of lutein from spinach: Effects of heating time, microwave-reheating and liquefaction.

A Houseplant that Cleans the Air

pothos ivy

Pothos Ivy just got a remake and will now remove benzene and chloroform from the air around it! Researchers at the University of Washington genetically modified this common houseplant and the resulting plant can clean these two pollutants which are hazardous compounds that are too small to be trapped in HEPA air filters.

Benzene which is a component of gasoline can build up in homes when we store lawn mowers and cars in attached garages. Even burning candles produce this compound. Chloroform is present in small amounts in chlorinated water and can be released when we take showers or boil water. Both compounds have been found to be linked to cancer. They aren’t commonly talked about because previously nothing could be done about them in our homes.

The modified Pothos Ivy plants express a protein called 2E1 which will transform these compounds into molecules which the plants will then use to support their growth. The process took 2 years and while other lab plants might only take a few months to achieve the intended results, the team chose the pothos because it is a robust houseplant that grows very well under a variety of conditions.

The researchers used a protein called cytochrome P450 2E1 or 2E1 for short, which is present in all mammals including humans. This protein turns chloroform into carbon dioxide and chloride ions and turns benzene into a chemical called phenol. However, 2E1 is located in our livers and is actually turned on when we consume alcohol. It is not available to us to help us process any pollutants in the air.

The team decided to have this reaction occur outside the body in a plant which they call an example of the “green liver” concept. The p450 2E1 cytochorme was taken from rabbits. It was then introduced into the pothos ivy so that each cell would express the protein. Pothos ivy does not flower in temperate climates so the genetically modified plants would not be able to spread via pollen.

They then tested how well the modified plants could remove the two pollutants from air compared to how well normal pothos ivy would preform. Both types of plants were put in glass tubes and then either chloroform gas or benzene was added. Over the following 11 days the team tracked how the concentration of each pollutant changed in the tubes.

The concentration of chloroform gas did not change over time in the unmodified plants. But the concentration of chloroform dropped by 82 percent after three days in the modified plants. And by the sixth day was almost undetectable. The benzene concentration also decreased in the modified plants, however more slowly. By the eighth day though the benzene concentration dropped by almost 75 percent. Normal pothos ivy only broke down less than 10 percent in the first week.

The team did use much higher pollutant concentrations that would typically be found in homes so they could detect changes. They anticipate that the levels of the two pollutants would drop similarly in homes and perhaps even faster over the same time frame.

If used in the home, the plants would need to be inside an enclosure with something to move the air past the leaves such as a fan. A plant sitting in a corner will have some effect on that particular room, but without airflow it would take a longer time for a molecule on another side of the room to reach the plant. And the transgenic plant also produces a green fluorescent protein that glows under UV light. This was added to make the plant more appealing and also to make it easy to spot!

The research team is now working on increasing the plants capabilities by adding a protein which can break down another hazardous molecule found in homes which is formaldehyde. This compound is present in some wood products such as laminate flooring and cabinets and in tobacco smoke.

All these hazardous compounds are very hard to get rid of. Without proteins to break down the molecules, high energy processes would have to be used. It makes more sense, is simpler and more sustainable to put the proteins all together in a common houseplant. And 2E1 is beneficial to the plant since they use chloride ions and carbon dioxide to make their food, and they use phenol to help make components of their cell walls.

The plant may soon be available in Canada where it does not grow outside. However it does grow in southern Florida so to get approval in the United States the research team has to show that the genetically modified pothos plant is no more likely to cause problems as a weed than regular pothos. Until it is available spider plants remove many pollutants so can be used in homes to help purify the air.

To view the original scientific study click here: Greatly Enhanced Removal of Volatile Organic Carcinogens by a Genetically Modified Houseplant, Pothos Ivy (Epipremnum aureum) Expressing the Mammalian Cytochrome P450 2e1 Gene. Environmental Science & Technology, 2018; DOI: 10.1021/acs.est.8b04811